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Abstract

Numerous factors contribute to the three-dimensional behavior of the wake behind a finite cylinder with relatively

large aspect ratio in a cross flow; among the more important ones are the trailing vortex shed from the free end and the

necklace vortex formed at the cylinder base. The trailing vortex interacts strongly with the flow around the cylinder;

thus giving rise to oblique vortex shedding and changes the flow structures, such as the vortex pattern, and the pressure

distribution around the cylinder. Formation of a necklace vortex near the base of the cylinder could give rise to

interaction between this vortex and the shed vortices along the cylinder span. Besides, the necklace vortex could even

interact with the trailing vortex, depending on the cylinder aspect ratio. For aspect ratios greater than a critical value a

suppressed two-dimensional region exists with vortex shedding resembling the Karman vortex street. In this paper, a

lattice Boltzmann method is used to numerically simulate the flow past a finite cylinder with an aspect ratio of 10 at

Reynolds numbers (Re) varying from 100 to 200. A major finding is that, even in this limited Re range, the wake

behavior and flow-induced forces are greatly affected by Re. A suppressed two-dimensional region exists but its size

decreases as Re increases. In addition, the effects of the trailing and necklace vortices on the variation of the Strouhal

number, and the mean and root mean square drag and lift coefficients along the span are found to be affected by Re.

r 2005 Elsevier Ltd. All rights reserved.

Keywords: Cantilevered cylinder; 3-D effects; LBM
1. Introduction

The flow around a two-dimensional (2-D) circular cylinder with finite aspect ratio (L/D) has been investigated

extensively in the past because it is associated with some complex physical phenomena and because of its intrinsic

importance to civil and wind engineering applications; here, L is the span and D is the diameter of the cylinder. Among

the major features investigated are the wake characteristics and the vortex street, and the effects of such factors as

Reynolds number, free-stream turbulence, L/D, surface smoothness, etc., on the wake behavior and on the vortex

patterns and their stability. Some major findings are the nature of the wake and its dependence on the Reynolds number

ðRe ¼ U1D=nÞ, where U1 is the free-stream velocity and n is the fluid kinematic viscosity. For example, the wake was
found to be laminar and 2-D at Re ¼ 100 (Zhang and Dalton, 1998), and 3-D and turbulent for Re4400 (Bloor, 1964).
The 3-D nature of the wake flow was found to consist of such behavior as oblique and parallel vortex shedding

patterns (Williamson, 1989), cellular shedding and associated vortex dislocations (Eisenlohr and Eckelmann, 1989;

Köng et al., 1990; Williamson, 1992), and different instability modes (Williamson, 1988, 1996a). The boundary
e front matter r 2005 Elsevier Ltd. All rights reserved.
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conditions at the cylinder ends were found to affect the vortex shedding pattern (Berger and Willie, 1972) and to depend

on whether the ends were free or equipped with end plates (Gerich and Eckelmann, 1982; Szepessy and Bearman, 1992).

The affected region is Re-dependent (Slaouti and Gerrard, 1981; Stager and Eckelmann, 1991). Comprehensive reviews

of recent advances and bluff body wakes are given by Roshko (1993), Williamson (1996b), Zdravkovich (1997), and

Matsumoto (1999). Besides these studies on the wake and the vortex shedding patterns and stability, numerous

investigations have also been carried out on the unsteady induced forces acting on the cylinder. Various methods of

measuring the forces have been used and these included direct as well as indirect methods. A comprehensive analysis of

the experimental and computational force coefficient results is given by Norberg (2003).

All these studies are concerned with finite (2-D) cylinder where the span extends the entire width (height) of the wind

tunnel test-section; i.e., the finite cylinder is not mounted as a cantilever. A finite cylinder with a free end mounted as a

cantilever gives rise to additional complication compared to the 2-D cylinder case and can be seen as the simplified

geometry of many civil engineering structures and tall buildings. Two complications could be identified as a result of the

free end and the extent of these effects will depend greatly on Re and L/D. These complicating effects are caused by the

free end and by the base flow around the cylinder. The flow separates from the top of the cylinder to form a trailing

vortex, and this will interact with the shed vortices from the cylinder surface, depending on L/D. If the cylinder is longer

than the critical length for Karman vortex shedding to take place, an oblique vortex shedding pattern will result

(Kawamura et al., 1984). This is an indication of the interaction between the trailing and shed vortices. The root of the

cylinder is usually embedded in the wall boundary layer. Therefore, in the base region, a necklace (horseshoe) vortex

will form. This rather general behavior is observed for cylinders with circular as well as square cross-section and with

different free-end shapes (Sakamoto and Arie, 1983; Okamoto and Sunabashiri, 1992; Park and Lee, 2000, 2004;

Martinuzzi and Tropea, 1993). The behavior is highly dependent on L/D though; e.g., as L/D is decreased to 2 or less,

the vortex shedding region, known as a suppressed 2-D vortex shedding region, would disappear (Kawamura et al.,

1984). A recent LES simulation of the flow around a finite cylinder with L=D ¼ 2:5 revealed that the average flow
exhibited an arch-type vortex behind the cylinder (Fröhlich and Rodi, 2004), much like that observed in the flow around

a wall-mounted cube (Martinuzzi and Tropea, 1993). These results are consistent with the observations of Kawamura

et al. (1984).

The effect of the trailing vortex and wake flow on the unsteady flow-induced forces has been investigated experimentally

by Farivar (1981), who carried out measurements over an aspect ratio range of 1pL=Dp40 at Re ¼ 7� 104. Similar

experiments have also been carried out by Sakamoto and Oiwake (1984). Farivar’s (1981) results showed that the mean

drag coefficient CD decreased as L/D decreased. This could be due to the fact that the trailing vortex effect was only

confined to a region near the free end, and a suppressed 2-D flow exists in the lower part of the cylinder (Kawamura et al.,

1984). As L/D decreased, the suppressed 2-D flow region also decreased and eventually disappeared. Experiments by Fox

and West (1993) indicated that the effect of the free-end disturbance was confined within 20D from the free-end. Three

distinct sets of vortex rows with different frequencies were measured by Farivar (1981), thus giving rise to three different

Strouhal numbers ðSt ¼ OsD=U1Þ along the span; here, Os is the shedding frequency.

A direct force cell measurement technique has been put forward by Richter and Naudascher (1976) to measure the

spanwise average unsteady forces in a laminar flow. This technique was extended to measure the unsteady forces in a

turbulent stream (So and Savkar, 1981) in an attempt to study the buffetting effect on the unsteady forces. The

technique was further extended to measure the local unsteady forces by Sin and So (1987). Baban et al. (1989) applied

this technique to measure the local unsteady forces directly along the span of a finite cylinder (L/D ¼ 2) and showed,

for the first time, that the fluctuating drag was larger than the fluctuating lift and that the characteristic frequency was

larger than the vortex shedding frequency. A detailed investigation of the local unsteady forces and wake flow was

carried out by Baban and So (1991a) where the correlations between the unsteady forces and the wake velocity were

measured. For cylinders with L=Dp2, they showed that the recirculating flow behind the cylinder was responsible for
the fluctuating drag. The trailing and necklace vortices shed from the cylinder gave rise to a fluctuating lift that was

smaller than the fluctuating drag. In fact, the root-mean-square (r.m.s.) drag coefficient C0
D was more than two times

larger than the r.m.s. lift coefficient C0
L.

The effects of L/D on CD and C0
D were further examined by Baban and So (1991b). Even though they have only

examined three values of L/D, their results clearly showed that CD increased with L/D. Their results were consistent

with the investigations of Sarode et al. (1981) and Okamoto et al. (1992) who reported that the overall CD increased

with L/D. Baban and So (1991b) further showed that CD and C0
D increased from cylinder root to a maximum along the

span and then decreased toward the free end. The location of the maximum tended to move toward the free end as L/D

increased. This trend was in agreement with the spanwise pressure distribution measurements reported by Farivar

(1981). On the other hand, C0
L increased as the root of the cylinder was approached and the trend was opposite to that

of C0
D. All the above investigations were conducted at Re�10

4; in much lower Re range, the number of studies is small.

Dauchy et al. (1997) numerically and theoretically investigated the primary and secondary instabilities in the laminar
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wake (Reo100) and indicated that the recirculation around the cylinder free end was basically responsible for the onset
of the secondary instability.

From this brief review, it is obvious that the flow and unsteady forces acting on a finite cylinder at low Re has only

been investigated sparingly. The effect of the free end on the wake flow and the unsteady forces has not been studied

systematically. Among the more important features are the effect of Re on the wake flow, the separate interaction effect

of the trailing and necklace vortices with the shed vortices from the cylinder, and their combined effect on the flow-

induced forces. Therefore, the objectives of this study are to explore these various effects at a fixed L/D for three Re. A

value of L=D ¼ 10 is chosen, so that a suppressed 2-D region still exists along the span of the cylinder. The reason for

this choice of L/D will be made clear later. In particular, the study examines the nature of vortex shedding, the effect of

the trailing vortex on shedding, and the behavior of St, CD, C0
D and C0

L along the span of the cylinder.
2. Numerical method

Numerical simulation is used to analyze the problem of a finite cantilevered cylinder in a cross-flow. The choice of the

numerical method is the lattice Boltzmann method (LBM) where the lattice Boltzmann equation (LBE) is solved instead

of the Navier–Stokes equation. It should be pointed out that, if the solution of the LBE is to recover the incompressible

Navier–Stokes equation correctly, the Mach number (M) effect on the density fluctuation of existing LBM should be

minimized. This is accomplished through a combination of the application of the Chapman–Enskog procedure and a

numerical method to minimize theM effect in the solution of the LBE (McNamara and Zanetti, 1988; Chen et al., 1992;

He and Luo, 1997a; Guo et al., 2000; Yu et al., 2002). It is in this sense that the LBM is used to resolve the

incompressible flow field in the present problem. The reason for this choice is because a recent study on 3-D

incompressible flow behind a nominally 2-D cylinder showed that the method gives credible results for the wake flow

and unsteady forces (So et al., 2005).

A schematic view of the problem and the computational domain is shown in Fig. 1. The cylinder with L=D ¼ 10 is

mounted as a cantilever with a free end exposed to the cross-flow. The upper and lower walls of the test-section are set

to give no-slip boundary condition. Incompressible flow with constant fluid density r and constant dynamic viscosity m
is assumed. A Cartesian coordinate system (x,y,z), where the x-axis is aligned with the incoming flow direction

(streamwise direction), the y-axis is perpendicular to the plane containing the streamwise and spanwise direction (z-axis)

is used to describe the flow. The z-axis is chosen to coincide with the cylinder axis. Hence, the origin of the coordinate

system is placed on this axis, with z ¼ 0 located at the base of the cylinder. All coordinates are normalized by D and the

physical parameters by D, r, m and U1, such that X ¼ x=D, Y ¼ y=D and Z ¼ z=D. The normalized flow-induced

force coefficient acting on the cylinder axis is decomposed into a drag coefficient CDð0; 0;Z; tÞ and a lift coefficient
CLð0; 0;Z; tÞ, where the nondimensional time is defined as t ¼ ~tU1=D and the nondimensional velocity vector and

static pressure defined as u ¼ ~u=U1 and p ¼ ~p=rU2
1. Here, a tilde is used to denote dimensional quantities and a bold

face used to denote vector quantities.

2.1. Lattice Boltzmann method

The lattice Boltzmann method (LBM) has been used by many to carry out incompressible flow calculations recently;

therefore, the technique is well accepted. In LBM, the convection operator (or streaming process) in phase space (or
x
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Fig. 1. Schematic view of the problem.
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Fig. 2. Schematic representation of the D3Q15 model.
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velocity space) is linear. This feature is borrowed from kinetic theory and contrasts with the nonlinear convection terms

in other approaches that use a macroscopic representation. Simple convection combined with a relaxation process (or

collision operator) allows the recovery of the nonlinear macroscopic advection through multi-scale expansions.

Therefore, the incompressible Navier–Stokes equation can be recovered correctly from the Boltzmann equation using

the BGK collision operator (Bhatnagar et al., 1954), the Chapman–Enskop procedure and a technique to eliminate

terms of order M2 due to the density fluctuation in existing LBM. The equation with the BGK collision operator

substituted can be written as

qf

q~t
þ e 	 rf ¼ �

f � f eq

l
, (1)

where l is the relaxation time due to particle collision, f is the particle distribution function and feq is the equilibrium

Boltzmann–Maxwell distribution function. It can be shown that the particle velocity field e can be discretized using a

small set of vectors {ei} such that the macroscopic conservation laws are satisfied (He and Luo, 1997b). The Boltzmann

equation (1) can be discretized along each velocity direction ei at each lattice. The result is commonly called the lattice

BGK model which is solved assuming a D3Q15 velocity model (Fig. 2). Other velocity models have been tested, but the

results were not as satisfactory compared to the D3Q15 model. The formulation and solution procedure follows closely

that presented in So et al. (2005). In view of this, there is no need to repeat the details of the LBM again. Details of the

method could be found in Cercignani (1988), Guo et al. (2000), So et al. (2005) and other references given in these

papers.

2.2. Boundary conditions and mesh refinement

Unlike Navier–Stokes solvers, the basic evolution variable in the LBM is f, which is usually not specified at the

boundaries. Therefore, when the macroscopic variable distributions at the boundary are known, it is important to find

an appropriate particle distribution such that it can meet the specified boundary condition. The current non-equilibrium

extrapolation treatment is based on the decomposition of the distribution function and still gives second-order accuracy

without having to make additional assumptions. The details of the boundary treatment has been discussed elsewhere

(So et al., 2005).

In the present problem, the vortices shed from the cylinder form a vortex street behind the cylinder. If the vortex

street is to be developed fully, the downstream computation domain has to be long enough. Furthermore, accurate

resolution of the boundary layer developed around the cylinder surface is important for the calculation of the

development of the vortex street. Therefore, a mesh refinement technique is adopted to accommodate the high gradient

in the velocity boundary layer around the cylinder. The computational domain is specified as 50� 15� 15 in the X, Y

and Z direction, respectively, with the inlet located at X ¼ �10 and the Y-axis extends from �7.5 to 7.5. A coarse grid

given by D/8 is defined for the whole flow field. Around the cylinder, a fine mesh region measured 6� 4� 11.5 is

specified. The upstream boundary of this fine mesh is located at X ¼ �2 and the fine mesh is defined by D/24. On the

coarse–fine mesh interface, the macroscopic variables and their derivatives are required to be continuous. Another fine
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mesh defined by D/32 has also been used to perform the calculations at Re ¼ 100. Results showed that the calculations

obtained from these two fine grids differ only by 1% or less. Subsequently, all calculations were carried out using the

fine grid specified by D/24. Details of the mesh refinement technique are given in So et al. (2005).

2.3. Data analysis

If the time series given by the LBM simulation were stationary, they can be analyzed using a fast Fourier transform

(FFT) technique. For 2-D and 3-D wake flow behind a cylinder, the velocity, pressure, and lift and drag signals are

essentially stationary. However, for 3-D flow behind a 2-D cylinder, the drag signal is non-stationary (So et al., 2005).

For the present problem, the interaction between the trailing and necklace vortex with the flow around the cylinder

could render the lift and drag signals non-stationary. In view of this, the calculated time series signals of lift, drag, etc.

are checked for stationarity using the wavelet analysis technique to analyze the localized variation of power within a

time series. This technique has been outlined in So et al. (2005); it will not be repeated here.
3. Results and discussion

The rationale for the choice of parameters investigated will now be made clear. From the studies of Farivar (1981),

Kawamura et al. (1984), Baban and So (1991b) and Fröhlich and Rodi (2004), it is known that the wake flow and

induced unsteady forces on the finite cylinder are greatly dependent on L/D for a given Re. In the Re range investigated

by the above researchers, i.e. Re4104, a suppressed 2-D region was found to exist when L/D46 and this region
completely disappeared when L=Dp2:5. That is, the suppressed 2-D region slowly disappeared between 2.5o L/D o
6.0. It is also known that for a given L/D, the suppressed 2-D region would depend on Re, although the extent of this

dependence is not known. Furthermore, for given Re and L/D, the wake flow behavior and unsteady forces will also be

influenced by turbulence in the free stream (which affects the separation behavior from the free end), transition to

turbulence in the wake and a fully turbulent wake. Most of the investigations reviewed in the Introduction were carried

out at Re4104. At this Re, the wake is fully turbulent. If the dependence on Re were to be investigated, it would be
better to isolate other effects such as free-stream turbulence. In view of this, the present choice of very low Re at a fixed

L/D would allow the effect of Re on the wake flow and unsteady forces to be investigated thoroughly. It would also

permit the effect of the interaction of the trailing and necklace vortices with the flow around the cylinder to be

examined, together with the extent of these interactions on the suppressed 2-D region. Consequently, L=D ¼ 10, and

Re ¼ 100, 150 and 200 are selected. A secondary reason for these choices of Re and L/D is that the LBM is more

reliable at low than at high Re. The recent study by So et al. (2005) showed that the LBM gave reliable results for the

calculation of 3-D flow and unsteady forces on a nominally 2-D cylinder.

For the cantilevered cylinder, the trailing vortex (or separated flow) emanating from the free end and vortices shed

from the cylinder surface would interact to change the flow structure significantly in the near wake. Besides this

interaction, a necklace vortex would also form near the base of the cylinder, and this too would interact with the shed

vortices from the cylinder surface. These interactions near the free end and the base would greatly affect the shed vortex

behavior and subsequently the flow-induced unsteady forces acting on the cylinder. The extent of these interactions on

the unsteady forces is not known unless and until their effects on the wake flow are understood. This study aims to seek

understanding of the effects of these interactions on the unsteady forces. Therefore, in the following, the wake flow is

examined first. A fairly detailed analysis of the unsteady force behavior along the span of the finite cylinder and the

influence of the wake flow on the unsteady forces is then presented.

3.1. Wake flow behavior

There are many ways to examine the wake flow behavior. In the present study, the vorticity distribution behind the

cylinder for the three Re values calculated will be analyzed in detail. These plots will be supplemented by flow-vector

plots and flow visualization if necessary, to illustrate the effect of Re on the suppressed 2-D region and on the extent of

the interactions between the trailing and necklace vortices with the flow around the cylinder. The calculations of the two

components of vorticity, -y and -z, and the flow vectors from the LBM simulations are quite standard; therefore, there

is no need to repeat how these calculations are performed here. The vorticity component -x would not help shed light

on the wake behavior; consequently, its distribution in the near wake is not examined. Flow visualization experiments

were performed to verify the calculated physics of the near-wake flow for the case Re ¼ 100. They were carried out in

the same water tunnel using an identical LIF technique as that employed by Lam et al. (2004) to study the 3-D wake
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vortices in the near wake of a wavy cylinder. The flow visualization experiment gives the development of the flow

pattern because the video camera captures the movement of the dye ejected from the cylinder and illuminated by the

laser. Details of the water tunnel set-up and the LIF technique are described in Lam et al. (2004); interested readers are

referred to their study.

The distributions of -z in the X�Y plane behind the cylinder at Re ¼ 100, 150 and 200 are plotted in Figs. 3(a)–(c),

for comparison. The region covers �2pXp32 and �7pYp7. In each figure, the -z at five different Z locations are

shown. These Z locations are selected to display the vorticity behavior at the center as well as near both ends;

consequently, they are chosen at Z ¼ 1 (near the base), 3, 5, 7 and 9 (near the free end). At Z ¼ 9, no vortex shedding

can be clearly identified, thus indicating that vortex shedding from cylinder surface is suppressed by the trailing vortex

emanating from the free end of the cantilevered cylinder. The vorticity distribution strongly suggests that the near-wake

flow is very similar to that observed for 2-D cylinder with very low Re; i.e., a closed recirculation region with two

symmetric vortices is formed behind the cylinder. This is clearly illustrated by the flow-vector plot shown in Fig. 4 at

Z ¼ 9 for the region covering �2pXp4 and �2pYp2. In Fig. 4, the flow pattern results from the visualization

experiment are also displayed alongside the vorticity and flow-vector plots. This result is consistent with the vorticity

and flow-vector plots.

At Z ¼ 7, the free end effect is not as strong; consequently, alternating vortices are shed from the cylinder surface.

However, the resultant -z is very weak. At mid-plane ðZ ¼ 5Þ, vortex shedding is much stronger and it clearly shows a

Karman vortex street. The vortex pattern resembles a 2S pattern. Referring to Fig. 4, the flow-vector plot and the flow

pattern deduced from the visualization experiment essentially substantiate this interpretation. The 2S vortex pattern is

clearly visible from the flow visualization experiment as well as from the flow-vector plot. As the base is approached

ðZ ¼ 3Þ, the shed vortices increase in strength, and it appears that a ‘‘P’’ type vortex pattern starts to emerge. It seems

that the vortex pattern is undergoing a transition from a 2S type to a 2P type. At Z ¼ 1, vortex shedding is again

suppressed due to the interference of the necklace vortex on the shed vortices, thus changing the behavior of -z

completely. The result of this interaction is very similar to that observed near the free end. However, the effect is not as

strong. An examination of the flow-vector plot and the flow visualization result shown in Fig. 4 at Z ¼ 1 essentially

verifies the above interpretation. There is one difference in the flow-vector plots at Z ¼ 1 and 9 though. The closed

region behind the cylinder is longer at Z ¼ 1 and there is only one vortex within the closed region. This points to the

fact that the interaction effect near the base is different from that near the free end. The difference could affect the

development of the unsteady forces on the cylinder.

Corresponding -z results for Re ¼ 150 and 200 are shown in Figs. 3(b) and (c), respectively. The overall behavior is

very similar to that shown for Re ¼ 100. There are minor differences and these are pointed out below. As Re increases,

the interaction of the trailing vortex with the shed vortices gives rise to slightly different shedding behavior at Z ¼ 7, but

essentially the same at Z ¼ 9. The alternating behavior at Re ¼ 100 begins to disappear as Re increases and is quite

evident at Re ¼ 200. Another difference is the vortex shedding pattern at Z ¼ 5. The pattern is 2S at Re ¼ 100,

begining to undergo transition to a 2P pattern as Re increases, completely becomes a 2P pattern at Re ¼ 200. The same

trend is also observed at Z ¼ 3. At this Z location, the transition to a 2P pattern actually starts at Re ¼ 100. It assumes

a 2P pattern at Re ¼ 150. These differences show that the extent of the interaction between the trailing and necklace

vortex with the flow around the cylinder becomes greater as Re increases. The effect of this increase on the development

of the unsteady forces will be examined later. The near-wake plots of -z and the flow vectors are not shown, because

they are similar to those given in Fig. 4 for Re ¼ 100.

Having examined the vorticity distributions in the X–Y plane, the next step is to investigate the vorticity distributions

in the X–Z plane. This plane is chosen at Y ¼ 0, or the plane that divides the cylinder into two equal halves. Two

vorticity components, namely -z and -y are calculated. They are plotted in Figs. 5(a)–(c) for the three cases of Re

investigated; the case of Re ¼ 100 is shown in Fig. 5(a), Re ¼ 150 in Fig. 5(b) and Re ¼ 200 in Fig. 5(c). In each figure,

two panels are shown, the top panel for -z and the bottom panel for -y. The plots Figs. 5(a)–(c) indicate that -z is

much stronger in the central region behind the cylinder. Near the free end and the base, -z is very weak. These plots

further show that oblique shedding along the cylinder span is clearly visible at Re ¼ 100. As Re increases, the extent of

the interaction of the trailing and necklace vortices with the shed vortices becomes greater and greater. At Re ¼ 200, the

region where oblique shedding is observed essentially disappears (Fig. 5(c)). Instead, vortex shedding behind the

cylinder is no longer organized like that shown in Fig. 5(a).

The bottom panel of Figs. 5(a–c) gives the distribution of -y and clearly shows the separated flow from the free end

of the cylinder. It is obvious that the separated flow does not extend to cover the entire span like the cases investigated

by Baban and So (1991a). For these cases where L=Dp2, the separated flow from the free end reattaches to the wall

downstream of the cylinder and a recirculation region is formed. This recirculation region completely destroys the

spanwise vortex shedding and gives rise to a different behavior for the flow-induced forces. More will be said about this

in the next section. There exist pairs of -y streets behind the cylinder and these pairs of vortex streets converge toward
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Fig. 3. The vorticity component -z at different Z locations with (a) Re ¼ 100; (b) Re ¼ 150; (c) Re ¼ 200.
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Fig. 3. (Continued)
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Fig. 3. (Continued)
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Fig. 4. Enlarged view of -z, flow vectors and visualization for Re ¼ 100 at the X–Y plane.
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the Y ¼ 0 plane far downstream ðX430Þ of the cylinder. These pairs of vortex streets could be induced by the trailing
and necklace vortices emanating from the free end and the base. This overall behavior is observed for all three Re

investigated. Of course, Re plays a part in the structure of this -y. An enlarged view of the separated flow region and

flow vectors in the X–Z plane at Re ¼ 100 together with the visualization result are shown in Fig. 6. It can be seen that

the separated shear layer flows down along the cylinder span and it is the interaction of this shear layer with the flow

around the cylinder that suppresses vortex shedding ð-zÞ from the cylinder surface. The extent of the penetration could

be assessed from the flow-vector plot. It seems that the flow visualization result is quite consistent with the flow-vector

plot (Fig. 6).

In summary, these results show that Re has a significant effect on the extent of the interaction at the free end and near

the base. This in turn affects the suppressed 2-D region where ‘‘normal’’ vortex shedding is observed. The vortex

shedding pattern in this region is dependent on Re and changes from a 2S type to a 2P type as Re increases. In the next

section, the effect of these changes on the unsteady forces and their 3-D nature is analyzed and the results are compared

with other data whenever available.
3.2. Behavior of the unsteady forces

The flow-induced forces can be calculated by either the momentum exchange method or by integrating the pressure

distribution around the cylinder at different Z locations. A nice feature of LBM is that the momentum flux tensor is
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Fig. 5. The vorticity components, -z and -y, at the X–Z plane.
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available locally from its very definition. In the present calculation, this method is used to calculate the fow-induced

forces. The normalized flow-induced force coefficient acting on the cylinder axis can be decomposed into a drag

coefficient CD (0,0, Z,t) and a lift coefficient CL (0,0, Z,t). From this point on, for the sake of brevity, the drag and lift

coefficients are written as CD ðZ; tÞ and CL ðZ; tÞ. The mean and r.m.s. force coefficients can then be calculated from CD

ðZ; tÞ and CL ðZ; tÞ and they are denoted by an overbar and a prime, respectively. For example, the mean drag
coefficient is given by C̄D and the r.m.s. drag coefficient by C

0

D. In calculating these mean and r.m.s. values, the lift and

drag time series are assumed to be stationary; i.e. the mean and r.m.s. values are deduced in a straightforward manner.

Verification of this assumption is presented when the spectra of the time series are examined.

Farivar (1981) measured the mean drag coefficient using two different methods: one a direct method that measured

the strain, and another by measuring the circumferential pressure distribution at fixed Z locations along the span. The

mean drag coefficient thus obtained represents an average over the entire span. No C̄D was reported. However, the

circumferential distributions of the pressure coefficient, Cp, at four Z locations for L=D ¼ 10 were reported. These

results showed that the base pressure is greatly dependent on Z; it reaches a minimum as the free end is approached and

increases toward the cylinder midspan. This suggests that C̄D increases from the midspan to the free end of the cylinder.

The same trend was also observed by Okamoto and Yagita (1973). These results were obtained at Re ¼ 7� 104. It

would be interesting to compare the present result with that reported by Farivar (1981). The Cp calculated from the

surface pressure data at Re ¼ 100 and different Z locations are plotted in Fig. 7. It can be seen that the base pressure

follows closely the trend reported by Farivar (1981), indicating an increase in C̄D as the free end is approached.
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Fig. 6. Enlarged view of -y, flow vectors and visualization for Re ¼ 100 in the X–Z plane.
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The present results further suggest that C̄D also increases toward the base. The overall trend is not significantly affected

by Re.

The variation of C̄D along the span with different Re is plotted in Fig. 8. They essentially verify the conclusion drawn

from the Cp plots shown in Fig. 7. The trend is similar for all Re investigated. However, there is one difference, and that

is the magnitude of C̄D decreases as Re increases. At mid-span, the reduction amounts to 16% of the value obtained for

Re ¼ 100. Since drag is a measure of the momentum deficit in the wake, this implies that the wake is narrower as Re

increases. In other words, the interaction of the trailing and necklace vortices has a significant effect on the width of the

wake. The growth of the wake at Z ¼ 5 and X ¼ 15 (or any other X and Z locations) is determined by using the U1=2
point to define its width. Thus determined, it is found that the width of the wake is about 27% smaller at Re ¼ 200

compared to that at Re ¼ 100. The increase toward the free end could be due to the effect of the separated region and

its interaction with the flow around the cylinder, while the corresponding increase noted near the base is a consequence

of the interaction between the necklace vortex and the flow around the cylinder. Near the base, the maximum C̄D drops

as Re increases, but the same is not true near the free end. This tends to suggest that the separated region and its

interaction with the flow around the cylinder plays a more important role in the determination of the drag behavior.

The fairly constant C̄D in the central region is a consequence of the existence of the suppressed 2-D region. The

reduction in size of this region as Re increases is an indication of the gradual disappearance of the suppressed 2-D

region.

The variations of C0
D and C0

L for the three Re investigated are plotted in Figs. 9 and 10, respectively. In order to

interpret these results, it is necessary to look into the relation between the C0
D and C0

L data for 2-D and finite cylinders.

A recent study by So et al. (2005) on 2-D cylinder with 3-D wake flow at Re ¼ 100 showed that the distributions of C0
D

and C0
L are not uniform across the span; however, the ratio of C0

L=C0
D is about 10 at mid-span and varies along the

span. The variation is an indication that the unsteady forces are not 2-D. So and Savkar (1981) found that the ratio of

the spanwise average force coefficients is also about 10 for the Re range of 104 o Reo 105. As for finite cylinders with

L/D o 2.5, Baban and So (1991a, b) found that C0
L=C0

Do1. The reason for this is because the recirculation region
formed behind the cylinder is responsible for the flow-induced force in the streamwise direction, and there is no visible

vortex shedding along the span of the cylinder. As a result, flow-induced lift becomes much less important compared to

the induced drag. Depending on L/D and the span location, the ratio could be as small as 1
3
. Their results simply reflect

the disappearance of the suppressed 2-D region and the transition to a complete 3-D unsteady force behavior along the

span of the finite cylinder. An examination of Figs. 9 and 10 reveals the following. At Re ¼ 100, C0
D is smallest but C0

L is

largest. As Re increases, C0
D increases but C0

L decreases. Thus, C0
L=C0

D is largest at Re ¼ 100 among the three Re

investigated. This trend follows that shown for the wake behavior; namely that as Re increases the extent of the

suppressed 2-D region decreases. Hence, C0
L decreases and C0

D increases with a concomitant decrease of C0
L=C0

D. The

distribution of C0
L is fairly symmetrical about midspan with its maximum occuring there (Fig. 10). This behavior

suggests that the interaction effect on C0
L is about similar at both ends of the cylinder. A minimum C0

D occurs at about

Z ¼ 7 (Fig. 9). A most likely explanation for this phenomenon is that the shear layer separated from the free end
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reverses back toward the cylinder as shown in Fig. 5, and interacts with the separated shear layers from the cylinder at

Z�7. This interaction occurs along the streamwise direction; thus it tends to suppress the oscillation of the streamwise

component of the vortex shedding.
3.3. Stationary nature of the unsteady forces

The stationary nature of the unsteady forces is further examined. Wavelet analysis is used to analyze the lift and drag

time series that might contain non-stationary power at many different frequencies (Daubechies, 1990). By decomposing

a time series into time–frequency space, it is possible to determine both the dominant modes of variability and how

those modes vary in time. Wavelet analysis has been carried out on the CL and CD time series for all Re investigated.
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Only sample spectral plots at Z ¼ 9:4, 5.0 and 0.63 for the Re ¼ 100 case are given in Figs. 11 and 12, and they are

shown with St versus t. Near the free end and the base, there exist two dominant shedding frequencies, and in midspan

the only dominant frequency is St ¼ 0.145 and coincides with one of the St observed elsewhere. The spectral plots show

that the CL time series is indeed stationary because the amplitudes of the St fluctuations do not vary with t,

consequently, the mean St is essentially constant. The dominant frequency in Fig. 12 is St ¼ 0.29 for all Z locations

examined, which is twice that shown for CL. The variation of St in the spectral plots clearly shows that the St envelope

and its mean, for all St shown except 0.29, vary with time; thus indicating a non-stationary behavior of the CD time

series. Both the CL and CD spectral plots show other dorminant frequencies, besides those characteristic of CL and CD.

Results for other Re are essentially the same; the difference is only in the degree of variation of St with t. This analysis,

therefore, suggests that the CL time series is stationary for all Re investigated but the CD time series is not.

In order to further verify this observation, the mean and r.m.s. values of the unsteady forces are calculated using the

running-time-average (RTA) method, which is consistent with the spirit of the continuous wavelet transform (So et al.,

2005). A slice of period 2T centered around an instantaneous time t is chosen for the determination of the mean and

r.m.s. values of the unsteady forces. As the slice is moved along the t-axis, the mean and r.m.s. values thus determined
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Fig. 11. Wavelet analysis of CL for (a) Z ¼ 9:4, (b) Z ¼ 5:0 and (c ) Z ¼ 0:63 at Re ¼ 100.
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will change with time for non-stationary signals but remain constant if the signals are stationary, provided 2T is much

larger than the period of the stationary signal. The RTA results for C0
D and C0

L are shown in Fig. 13 for Re ¼ 100 and

200, and three Z locations chosen near the floor, at mid span and near the free end. The time range covered is 260o t

o 490. It can be seen that the variation of C0
L with t is small; however, the variation is dependent on Re and Z. For

example, the variation of C0
L is largest for Re ¼ 200 at Z ¼ 5. This could be the consequence of the intense mixing of

the trailing vortex with shed vortices along the span for this Re in the central region (Figs. 3(c) and 5(c)). The variation

of C0
D is very small for Re ¼ 100; however, it becomes quite substantial for Re ¼ 200. This behavior is consistent with

the observation for C0
L and could be attributed to the intense mixing between the trailing vortex and the shed vortices

along the span. The average at these locations over the t range shown are calculated and plotted in Fig. 9 and 10 for

comparison with C0
D and C0

L calculated using the conventional method. In addition, the calculated C̄D are compared in

Fig. 8. The RTA calculated C̄D and C0
L are in good agreement with the conventionally determined mean and r.m.s.

values. As for C0
D, the RTA calculated values are in good agreement with the conventionally determined mean and

r.m.s. values for the Re ¼ 100 case only. It is not so for the Re ¼ 200 case (Fig. 9). Therefore, this analysis lends

credence to the observation that the CD time series is not stationary for the Re ¼ 200 case, but it is stationary for the

Re ¼ 100 case. The CL time series is essentially stationary for all Re investigated.
3.4. Spatial correlation of the unsteady forces

An effective way to examine the three-dimensional nature of the unsteady forces is to calculate the spatial correlation

of the forces along the span. From the study of So et al. (2005), it is known that the drag would exhibit 3-D behavior
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Fig. 12. Wavelet analysis of CD for (a) Z ¼ 9:4, (b) Z ¼ 5:0 and (c) Z ¼ 0:63 at Re ¼ 100.
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long before the lift does, because in the case of a 2-D cylinder in a cross-flow the only external excitation is the

alternating vortex shedding from the cylinder. As a result, the lift force signal has one dominant frequency, while the

drag force signal has at least two major frequencies. For the cantilevered cylinder with L/D ¼ 10, a suppressed 2-D

region exists. In other words, the lift force will dominate in this region and if this force is to be examined for 3-D

behavior, its spatial correlation along the span should be analyzed. There is no need to examine the spatial correlation

of CD (Z,t) then. Since CL is a function of Z and t, i.e. CL ¼ CL (Z,t), spatial correlation and autocorrelation at a fixed

spatial location can be calculated. Here, only the cross-correlation coefficient

gijðtÞ ¼
P

tf½CLðZi ; t þ tÞ�½CLðZj ; tÞ�gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
t½CLðZi; t þ tÞ�2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
t½CLðZj ; tÞ�

2
q , (2)

at delay time t between spanwise locations i and j is calculated. Besides the mean and r.m.s. force coefficients, gij for the

lift force is also calculated and presented below. In addition, the spectral behavior of CL is examined in order to

determined the distribution of St ¼ Od D=U1 along the span. Here, St is to be interpreted loosely as the Strouhal

number defined by the dominant frequencies ðOd Þ in the spectra and not just by the shedding frequency ðOsÞ alone. This

analysis tends to bring out the interaction effect of the trailing and necklace vortices with the flow around the cylinder

and the subsequent change of the vortex shedding frequency, if any.

The variation of gijð0Þ at zero time delay is plotted in Fig. 14. It shows the cross-correlation of CL (Z,t) between Z ¼ 0

and other Z locations along the span. For Re ¼ 100, gijð0Þ � 0:95 and this remains fairly uniform over the central

region 3 o Z o 7. Near the free end, gijð0Þ quickly drops to zero suggesting a complete 3-D behavior of CL. On the

other hand, near the base gijð0Þ � 0:80, thus suggesting that CL is relatively more 2-D near the base than near the free

end. As Re increases to 150, this behavior completely disappears; gijð0Þ � 0:20 and suggests that CL is undergoing a

transition to 3-D behavior. Furthermore, the relatively uniform gijð0Þ in the central region completely disappears even

though gijð0Þ � 1 at mid-span. At Re ¼ 200, gijð0Þ ¼ 0 at the base and becomes negative in the region Zo2. This shows
that the effect of the interaction with the necklace vortex gives rise to a complete 3-D behavior of CL. These results are

consistent with the wake flow and the force coefficients presented earlier.

The spectrum of CL is calculated using FFT and all dominant frequencies are identified for the calculation of St.

Sample plots of the spectra for Re ¼ 100 and 200 at selected Z locations are shown in Fig. 15. The spectral plots clearly

show that, at midspan, there is only one dominant peak and this occurs at St ¼ 0.145. This value is consistent with

St ¼ 0.1476 reported by Dauchy et al. (1997) who investigated the primary and secondary instabilities of a cylinder

wake with a free end at L/D ¼ 10.7 and Re ¼ 100. As the free end is approached, the peak at St ¼ 0.145 disappears but

peaks occur at other locations instead. This behavior is also observed as the base is approached. In order to assess the

effect of Re on the behavior of St along the span, St for Re ¼ 100 and 200 are calculated from the various spectral plots
Z
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and shown in Fig. 16 together with the results reported by Farivar (1981) at Re ¼ 7� 104. Even though the Re of

Farivar’s experiment (1981) is much larger than the present investigation, the comparison is still meaningful because it

will show the similarity of the overall trend or lack thereof for these different Re. It can be seen that at Re ¼ 100,

St ¼ 0.145 is observed to extend from Z ¼ 0:63 to 0.94. This result is consistent with that reported by Farivar (1981),
even though his measured St is about 0.18 and there is more scatter in his measurements. Near the free end, extending

from Z ¼ 8 to 9.4, another St ¼ 0.435 is observed. This is also true near the base, where the second dominant frequency

is observed to extend from Z ¼ 2:5 down to Z ¼ 0:63. This is the third harmonic of St ¼ 0.145. At Re ¼ 200, the region

where St ¼ 0.145 only covers Z ¼ 2 to 8. Near the free end ðZ49Þ, only StE0.51 and 0.96 are observed. Near the base
ðZo1Þ, these two Strouhal numbers are also observed; again St ¼ 0.145 has disappeared. Unlike the region near the

free end, in the region 1oZp2 three dominant frequencies are observed, including the St ¼ 0.145 frequency. This tends

to support the suggestion that there is a fundamental difference between the interaction near the free end and that near

the base. The difference could be gleaned from the -y plots shown in Fig. 5.
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4. Conclusions

A cantilevered cylinder with L=D ¼ 10 in a cross-flow at Re ¼ 100, 150 and 200 is simulated using the LBM method.

This three-dimensional simulation leads to the following conclusions:
(i)
 The simulations show that for all Re investigated, there exists a suppressed 2-D region in the central portion of the

finite cylinder. Near the free end, the wake flow interacts with the trailing vortex to give rise to 3-D effects. The

same also happens near the base, where the interaction is between the necklace vortex and the wake flow.
(ii)
 The extent of this interaction is not the same near the free end and near the base. It is affected by the Reynolds

number.
(iii)
 It is this interaction that gives rise to oblique vortex shedding along the span in the central part of the cylinder

span.
(iv)
 As Re increases, the extent of the interaction regions increases and the suppressed 2-D region decreases. This

effect is quite significant, although Re increases from 100 to 200.
(v)
 The unsteady forces along the span have an entire 3-D behavior with C̄D increases from a low at the base

to a maximum at about Z ¼ 1, then drops to a plateau in the central part of the span and further increases

toward the free end. This overall trend is true for all Re investigated, but the magnitude decreases significantly

with Re.
(vi)
 The same behavior of a reduction in magnitude as Re increases is also true for C0
L but not for C0

D. Instead, C0
D

increases with Re. This increase reduces the ratio C0
L=C0

D as Re increases and could be interpreted as an indication

of the slow disappearance of the suppressed 2-D region.
(vii)
 Further evidence that the unsteady forces are 3-D in nature is provided by the distribution of St along

the span. Near the free end and the base, multiple St appear while the fundamental St disappears. This too is

affected by Re.
(viii)
 All unsteady forces are stationary along the span at Re ¼ 100. However, as Re increases, the spanwise fluctuating

drag will become more and more non-stationary. At Re ¼ 200, the CD time series essentially becomes non-

stationary along the span. However, this non-stationary character is not reflected in the C̄D behavior for all Re

investigated.
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